ranger_importances.Rd
Calculates ranger-based variable importances for data frames and Seurat objects
ranger_importances(x, ...) FindAllMarkers_ranger.Seurat( object, genes_use = Seurat::VariableFeatures(object), ... )
... | additional arguments to be passed to ranger |
---|---|
object | a Seurat or data frame object |
genes_use | a character vector indicating which genes to use in the classification. currently implemented only for Seurat objects. (for data frames one can simply subset the input data frame) |
cluster | a cluster name for which the markers will be found |
pval_cutoff | p value cutoff for the markers |
imp_method | importance method, either of "janitza" or "altmann" |
num.trees | number of trees to be build using ranger |
return_what | a subset of "ranger_fit", "importances_ranger", "signif_importances_ranger", defaults to signif_importances_ranger |
warn.imp.method | logical indicating wether warning should be issued when few negative importances are found to calculate the p.values in ranger. |
return | ranger_fit, importances_ranger, signif_importances_ranger |
by default returns a data frame with the importances and p values but this behavior can be modified by the
FindAllMarkers_ranger.Seurat
: Calculate variable importances to each cluster in a Seurat object
#> importance pvalue gene #> HLA-DPB1 8.2824862 0 HLA-DPB1 #> S100A8 7.4094517 0 S100A8 #> S100A9 6.1534456 0 S100A9 #> HLA-DQA1 3.0576261 0 HLA-DQA1 #> GNLY 1.6808031 0 GNLY #> VDAC3 0.4500117 0 VDAC3# importance pvalue gene # HLA-DPB1 8.226410 0 HLA-DPB1 # S100A9 6.648748 0 S100A9 # S100A8 6.537872 0 S100A8 # HLA-DQA1 3.103721 0 HLA-DQA1 # GNLY 1.779237 0 GNLY