Calculates ranger-based variable importances for data frames and Seurat objects

ranger_importances(x, ...)

FindAllMarkers_ranger.Seurat(
  object,
  genes_use = Seurat::VariableFeatures(object),
  ...
)

Arguments

...

additional arguments to be passed to ranger

object

a Seurat or data frame object

genes_use

a character vector indicating which genes to use in the classification. currently implemented only for Seurat objects. (for data frames one can simply subset the input data frame)

cluster

a cluster name for which the markers will be found

pval_cutoff

p value cutoff for the markers

imp_method

importance method, either of "janitza" or "altmann"

num.trees

number of trees to be build using ranger

return_what

a subset of "ranger_fit", "importances_ranger", "signif_importances_ranger", defaults to signif_importances_ranger

warn.imp.method

logical indicating wether warning should be issued when few negative importances are found to calculate the p.values in ranger.

return

ranger_fit, importances_ranger, signif_importances_ranger

Value

by default returns a data frame with the importances and p values but this behavior can be modified by the

Functions

  • FindAllMarkers_ranger.Seurat: Calculate variable importances to each cluster in a Seurat object

Examples

head(ranger_importances(Seurat::pbmc_small, cluster = 'ALL', warn.imp.method = FALSE))
#> importance pvalue gene #> HLA-DPB1 8.2824862 0 HLA-DPB1 #> S100A8 7.4094517 0 S100A8 #> S100A9 6.1534456 0 S100A9 #> HLA-DQA1 3.0576261 0 HLA-DQA1 #> GNLY 1.6808031 0 GNLY #> VDAC3 0.4500117 0 VDAC3
# importance pvalue gene # HLA-DPB1 8.226410 0 HLA-DPB1 # S100A9 6.648748 0 S100A9 # S100A8 6.537872 0 S100A8 # HLA-DQA1 3.103721 0 HLA-DQA1 # GNLY 1.779237 0 GNLY